156 research outputs found

    Impact of hyperprolific line on litter size in multiplication herd

    Get PDF
    Cílem studie bylo stanovení vlivu a realizovaného genetického zisku ze selekce hyperplodné linie na užitkovost v chovech rozmnožovacích.The hyperprolific line is considered to be maximally effective in pursuit of progress in sow's reproduction. Hyperprolific line efficiency is commonly evaluated in regard of breeding herd progress. We decided to study how effective it is with respect to increasing of litter size in multiplication herd. Our study is specific by using the data from practice, concretely it is based on the information about the ancestor of sows in multiplication herd. The ancestors could be the member either hyperprolific line or normal line. The information about performances of sows breed in multiplication herd was known. The mixed linear models in SAS for Windows 9.1.2. were conducted to statistical analysis. Our results indicated that no significant effect on litter size was achieved by selection criteria used in the hyperprolific line creation. In studied population no differences between TNB, NBA or NW were found on the 1st as well as on the 1st?5th litters. As we have mentioned above, the study is specific by using the data from practice. Therefore the studied population size is limited. It is necessary to take into consideration when the results are applied. Nevertheless, the results shown that other studies with larger population should be done to reevaluate the selection criteria

    Formulation, characterization and properties of hemp seed oil and its emulsions

    Get PDF
    The formulation, characterization, and anticipated antibacterial properties of hemp seed oil and its emulsions were investigated. The oil obtained from the seeds of Cannabis sativa L. in refined and unrefined form was characterized using iodine, saponification, acid values, and gas chromatography, and was employed for the preparation of stable oil-in-water emulsions. The emulsions were prepared using pairs of non-ionic surfactants (Tween, Span). The effects of the emulsification method (spontaneous emulsification vs. high-intensity stirring), hydrophilic lipophilic balance (HLB), type and concentration of surfactant, and oil type on the size and distribution of the emulsion particles were investigated. It was found that the ability to form stable emulsions with small, initial particle sizes is primarily dependent on the given method of preparation and the HLB value. The most efficient method of emulsification that afforded the best emulsions with the smallest particles (151 ± 1 nm) comprised the high-energy method, and emulsions stable over the long-term were observed at HBL 9 with 10 wt % concentration of surfactants. Under high-intensity emulsification, refined and unrefined oils performed similarly. The oils as well as their emulsions were tested against the growth of selected bacteria using the disk diffusion and broth microdilution methods. The antibacterial effect of hemp seed oil was documented against Micrococcus luteus and Staphylococcus aureus subsp. aureus. The formulated emulsions did not exhibit the antibacterial activity that had been anticipated. © 2017 by the authors.MOE, Ministry of EducationMinistry of Education, Youth and Sports of the Czech Republic-Program NPU I [LO1504]; Czech Science Foundation [17-05095S]; TBU in Zlin [IGA/CPS/2017/001

    Enhancement of temozolomide stability by loading in chitosan-carboxylated polylactide-based nanoparticles

    Get PDF
    In the presented work, amphiphilic nanoparticles based on chitosan and carboxy-enriched polylactic acid have been prepared to improve the stability of the pro-drug temozolomide in physiological media by encapsulation. The carrier, with a diameter in the range of 150–180 nm, was able to accommodate up to 800 μg of temozolomide per mg of polymer. The obtained formulation showed good stability in physiological condition and preparation media up to 1 month. Temozolomide loaded inside the carrier exhibited greater stability than the free drug, in particular in simulated physiological solution at pH 7.4 where the hydrolysis in the inactive metabolite was clearly delayed. CS-SPLA nanoparticles demonstrated a pH-dependent TMZ release kinetics with the opportunity to increase or decrease the rate. Mass spectroscopy, UV-Vis analysis, and in vitro cell tests confirmed the improvement in temozolomide stability and effectiveness when loaded into the polymeric carrier, in comparison with the free drug. © 2017, The Author(s).15-08287Y, GACR, Grantová Agentura České Republiky; 15-08287Y, GAČR, Grantová Agentura České Republiky; CZ.1.05/2.1.00/19.0409, MŠMT, Ministerstvo Školství, Mládeže a Tělovýchovy; LO1504, MŠMT, Ministerstvo Školství, Mládeže a TělovýchovyCzech Science Foundation [15-08287Y]; Ministry of Education, Youth and Sports of the Czech Republic [LO1504, CZ.1.05/2.1.00/19.0409]; Internal Grant Agency of the Tomas Bata University in Zlin [IGA/CPS/2016/004

    Anticoagulant polyethylene terephthalate surface by plasma-mediated fucoidan immobilization

    Get PDF
    Biomaterial-based blood clot formation is one of the biggest drawbacks of blood-contacting devices. To avoid blood clot formation, their surface must be tailored to increase hemocompatibility. Most synthetic polymeric biomaterials are inert and lack bonding sites for chemical agents to bond or tailor to the surface. In this study, polyethylene terephthalate was subjected to direct current air plasma treatment to enhance its surface energy and to bring oxidative functional binding sites. Marine-sourced anticoagulant sulphated polysaccharide fucoidan from Fucus vesiculosus was then immobilized onto the treated polyethylene terephthalate (PET) surface at different pH values to optimize chemical bonding behavior and therefore anticoagulant performance. Surface properties of samples were monitored using the water contact angle; chemical analyses were performed by FTIR and X-ray photoelectron spectroscopy (XPS) and their anticoagulant activity was tested by means of prothrombin time, activated partial thromboplastin time and thrombin time. On each of the fucoidan-immobilized surfaces, anticoagulation activity was performed by extending the thrombin time threshold and their pH 5 counterpart performed the best result compared to others. © 2019 by the authors.Czech Science Foundation [17-10813S]; Ministry of Education, Youth and Sports of the Czech Republic, Program NPU I [LO1504]; internal grant agency of Tomas Bata University in Zlin [IGA/CPS/2019/004

    Antibacterial activity and cytotoxicity of immobilized glucosamine/chondroitin sulfate on polylactic acid films

    Get PDF
    Polylactic acid (PLA) is one of the most produced polymeric materials, due to its exceptional chemical and mechanical properties. Some of them, such as biodegradability and biocompatibility, make them attractive for biomedical applications. Conversely, the major drawback of PLA in the biomedical field is their vulnerability to bacterial contamination. This study focuses on the immobilization of saccharides onto the PLA surface by a multistep approach, with the aim of providing antibacterial features and evaluting the synergistic effect of these saccharides. In this approach, after poly (acrylic acid) (PAA) brushes attached non-covalently to the PLA surface via plasma post-irradiation grafting technique, immobilization of glucosamine (GlcN) and chondroitin sulfate (ChS) to the PAA brushes was carried out. To understand the changes in surface properties, such as chemical composition, surface topography and hydrophilicity, the untreated and treated PLA films were analyzed using various characterization techniques (contact angle, scanning electron microscopy, X-ray photoelectron spectroscopy). In vitro cytotoxicity assays were investigated by the methyl tetrazolium test. The antibacterial activity of the PLA samples was tested against Escherichia coli and Staphylococcus aureus bacteria strains. Plasma-treated films immobilized with ChS and GlcN, separately and in combination, demonstrated bactericidal effect against the both bacteria strains and also the results revealed that the combination has no synergistic effect on antibacterial action. © 2019 by the authors.Internal Grant Agency of Tomas Bata University in Zlin [IGA/CPS/2019/004]; Czech Science Foundation [17-05095S]; Slovenian Research Agency [L2-8179

    A new route of fucoidan immobilization on low density polyethylene and its blood compatibility and anticoagulation activity

    Get PDF
    Beside biomaterials’ bulk properties, their surface properties are equally important to control interfacial biocompatibility. However, due to the inadequate interaction with tissue, they may cause foreign body reaction. Moreover, surface induced thrombosis can occur when biomaterials are used for blood containing applications. Surface modification of the biomaterials can bring enhanced surface properties in biomedical applications. Sulfated polysaccharide coatings can be used to avoid surface induced thrombosis which may cause vascular occlusion (blocking the blood flow by blood clot), which results in serious health problems. Naturally occurring heparin is one of the sulfated polysaccharides most commonly used as an anticoagulant, but its long term usage causes hemorrhage. Marine sourced sulfated polysaccharide fucoidan is an alternative anticoagulant without the hemorrhage drawback. Heparin and fucoidan immobilization onto a low density polyethylene surface after functionalization by plasma has been studied. Surface energy was demonstrated by water contact angle test and chemical characterizations were carried out by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Surface morphology was monitored by scanning electron microscope and atomic force microscope. Finally, their anticoagulation activity was examined for prothrombin time (PT), activated partial thromboplastin time (aPTT), and thrombin time (TT). © 2016 by the authors; licensee MDPI, Basel, Switzerland.Operational Program Research and Development for Innovations; European Regional Development Fund (ERDF); national budget of Czech Republic, within the framework of project Centre of Polymer Systems [CZ.1.05/2.1.00/03.0111]; Ministry of Education, Youth and Sports of the Czech Republic [LO1504

    Variations of polymer porous surface structures via the time-sequenced dosing of mixed solvents

    Get PDF
    A new approach to polystyrene surface treatment via the time-sequenced dispensing of good and poor solvent mixtures on the rotating surface of treated substrate is presented in this study. It is demonstrated that the variation of the sequencing together with other variables (e.g., temperature and solvent concentration) affects the size and depth of pores evolving on the polystyrene surface. A model of the surface pore creation, associated with the viscoelastic phase separation, surface tension, and secondary flows caused by temperature variations and the rapid evaporation of the good solvent is proposed. Experimental results of profilometric, goniometric, and optical measurements show that this approach enables the simple and quick preparation of surfaces with various numbers, diameters, and depths of individual pores, which ultimately affects not only the wetting characteristics of the surfaces but also the fate of cells cultivated there. The presented method allows the easy preparation of a large number of structured substrates for effective cell cultivation and proliferation. © 2017 American Chemical Society.CZ.1.05/2.1.00/19.0409, ERDF, European Regional Development Fund; MOE, Ministry of EducationOperational Program Research and Development for Innovations - European Regional Development Fund (ERDF); national budget of the Czech Republic within the framework of the project Centre of Polymer Systems [CZ.1.05/2.1.00/03.0111]; Ministry of Education, Youth and Sports of the Czech Republic, Program NPU I [LO1504]; European Regional Development Fund [CZ.1.05/2.1.00/19.0409]; TBU [IGA/FT/2015/014, IGA/FT/2016/013]Operational Program Research and Development for Innovations - European Regional Development Fund (ERDF); national budget of the Czech Republic within the framework of the project Centre of Polymer Systems [CZ.1.05/2.1.00/03.0111]; Ministry of Education, Youth and Sports of the Czech Republic, Program NPU I [LO1504]; European Regional Development Fund [CZ.1.05/2.1.00/19.0409]; TBU [IGA/FT/2015/014, IGA/FT/2016/013

    Exploring the critical factors limiting polyaniline biocompatibility

    Get PDF
    Today, the application of polyaniline in biomedicine is widely discussed. However, information about impurities released from polyaniline and about the cytotoxicity of its precursors aniline, aniline hydrochloride, and ammonium persulfate are scarce. Therefore, cytotoxicity thresholds for the individual precursors and their combinations were determined (MTT assay) and the type of cell death caused by exposition to the precursors was identified using flow-cytometry. Tests on fibroblasts revealed higher cytotoxicity of ammonium persulfate than aniline hydrochloride. Thanks to the synergic effect, both monomers in combination enhanced their cytotoxicities compared with individual substances. Thereafter, cytotoxicity of polyaniline doped with different acids (sulfuric, nitric, phosphoric, hydrochloric, and methanesulfonic) was determined and correlated with impurities present in respective sample (HPLC). The lowest cytotoxicity showed polyaniline doped with phosphoric acid (followed by sulfuric, methanesulfonic, and nitric acid). Cytotoxicity of polyaniline was mainly attributed to the presence of residual ammonium persulfate and low-molecular-weight polar substances. This is crucial information with respect to the purification of polyaniline and production of its cytocompatible form.Ministry of Education, Youth and Sports of the Czech Republic [LO1504]; Czech Science Foundation [17-05095S]; Tomas Bata University in Zlin [IGA/CPS/2019/004

    Ferrofluid for radiofrequency capacitive hyperthermia: In-vitro study

    Get PDF
    The current work deals with preparation and characterization of electrically lossy ferrofluid which can be used as a mediator for radio frequency (RF) - capacitive hyperthermia method. To this end, ferrofluid that can absorb the energy of alternating electrical field at the frequencies commonly employed in RF-capacitive hyperthermia (13.56 and 27.12 MHz) has been prepared by co-precipitation method. This ferrofluid comprises of electrically conductive component with core-shell structure, i.e. magnetite nanoparticles (NPs) coated by dextran, organized in chain-like structure. The effect of RF - capacitive hyperthermia in the presence of mediator was studied on the series of tests performed on HaCaT and HepG2 cell lines using MMT test. The RF-electrical field (13.56 MHz) with controllable power output was applied using the EHY-110 SA (Oncotherm group) to increase the temperature of samples from 37°C up to target temperature of 44°C. The results of in-vitro test clearly indicate that the usage of capacitive heating of obtained ferrofluid substantially contribute to cytotoxic effect of hyperthermia treatment.Ministry of Education, Youth and Sports of the Czech Republic Program NPU I [LO1504

    Antibacterial performance of alginic acid coating on polyethylene film

    Get PDF
    Alginic acid coated polyethylene films were examined in terms of surface properties and bacteriostatic performance against two most representative bacterial strains, that is, Escherichia coli and Staphylococcus aureus. Microwave plasma treatment followed by brush formation in vapor state from three distinguished precursors (allylalcohol, allylamine, hydroxyethyl methacrylate) was carried out to deposit alginic acid on the substrate. Surface analyses via various techniques established that alginic acid was immobilized onto the surface where grafting (brush) chemistry influenced the amount of alginic acid coated. Moreover, alginic acid was found to be capable of bacterial growth inhibition which itself was significantly affected by the brush type. The polyanionic character of alginic acid as a carbohydrate polymer was assumed to play the pivotal role in antibacterial activity. The cell wall composition of two bacterial strains along with the substrates physicochemical properties accounted for different levels of bacteriostatic performance.Operational Program Research and Development for Innovations - European Regional Development Fund (ERDF); national budget of Czech Republic, within framework of project "Centre of Polymer Systems" [CZ.1.05./2.1.00/03.0111]; Grant Agency of Czech Republic [GA13-08944S]; Ministry of Education of the Slovakia; Slovak Academy of Sciences [2/0199/14
    corecore